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Graphene has huge potential in photonics and optoelectronics, where the combination of its 

unique optical and electronic properties can be fully exploited, the absence of a bandgap can be 

beneficial, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability [1]. 

The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging 

from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers [1]. 

Despite being a single atom thick, graphene can be optically visualized [2]. Its transmittance can 

be expressed in terms of the fine structure constant [3].  The linear dispersion of the Dirac 

electrons enables broadband applications [4,5,6,7]. Saturable absorption is observed as a 

consequence of Pauli blocking [7,8]. Chemical and physical treatments enable luminescence [1,9]. 

Broadband nonlinear photoluminescence is also possible following non-equilibrium excitation of 

untreated graphene layers [10,11,12]. Graphene-polymer composites prepared using wet 

chemistry [7,8,13] can be integrated in a fiber laser cavity, to generate ultrafast pulses and enable 

broadband tunability [7,8]. Graphene’s suitability for high-speed photodetection was demonstrated 

in optical communication links operating at 10Gbits
-1

 [5]. By combining graphene with plasmonic 

nanostructures, the efficiency of graphene-based photodetectors can be increased by up to 20 

times [14]. Wavelength and polarization selectivity can be achieved by employing nanostructures 

of different geometries [14].  

I will give a thorough overview of the state of the art of graphene photonic and optoelectronic 

devices, outlining the major stumbling blocks and development opportunities. In the first part of the 

talk I will focus on solar cells where graphene can fulfill the following functions: as the transparent 

conductor window [15], antireflective material [16], photoactive material [17], channel for charge 

transport [18], and catalyst [19]. 

 
Figure 1: Schematics of (a) inorganic solar cell, (b) polymer solar cell, (c) dye-sensitized solar 
cell, (d) organic light emitting diode (e) photodetector and (f) smart window. 

A variety of configurations have been demonstrated to date, ranging from silicon solar cells (fig 1a) 

[16], to polymer (fig 1b) [17] and dye-sensitized solar cells (fig 1c) [15,18,19]. I will also show how 

plasmonic nanostructures can be used to increase dramatically the light harvesting properties in 

solar cells [14]. In the second part of the talk I will turn to a broader consideration of graphene 

applications in other photonic and optoelectronics devices, such as electroluminescent devices 

(fig.1 d) [20], photodetectors (fig.1 d) [5,6,14], smart windows (fig.1 f) [1] and ultrafast lasers [7,8]. 
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