Structural and electronic properties of some derivatives of C₂₀

F. Naderi*

Department of Chemistry, Shahr-e Qods Branch, Islamic Azad University, Shahr-e Qods, 37541-13115, Tehran, Iran

fnaderi2@yahoo.com

Full geometry optimizations are accomplished without any symmetry constraints by means of hybrid functional B3LYP [1-3] and the 6-31+G* basis set, as implemented in Gaussian 98 [4]. The applied basis set is comprised of Pople's well known 6-31G* basis set [5,6] and an extra plus due to the importance of diffuse functions [7,8]. Vibrational frequency computations confirm that the fully optimized structures are indeed minima (NIMAG = 0). To obtain more accurate energetic data, single point calculations are performed at B3LYP/6-311++G** level. As a stability criterion of different configurations, binding energies are calculated according to the following expression:

$E_{b} = 20EC + 8EX - E$

where E is the total energy of the $C_{20}X_8$ heterofullerene. Systems with larger binding energies are more stable. The electronic conductivity of the fullerenes which is related to the HOMO-LUMO energy gaps were considerably influenced by exohedral derivatives. The NBO population analysis on optimized structures is accomplished at the B3LYP/6-311++G**//B3LYP/6-31++G* level [9].

The smallest possible fullerenes cage, i.e. C_{20} , taken into account of exohedral derivatives through our previously reported isolation strategy. The exohedral derivatives atoms are replaced at eight selected symmetric positions of C_{20} . Probing heterofullerenes $C_{20}X_8$ where X = H, OH, CN, F, Cl and Br reveals that all the systems are true minima. Calculated binding energy of 216.54 eV show $C_{20}(CN)_8$ as the most stable heterofullerene followed by $C_{20}(OH)_8$ with the binding energy of 185.32 eV. The binding energies of the other heterofullerenes ranges from 138.45 to 153.55 eV. Exohedral derivatives leads to a high charge distribution on the surfaces of all heterofullerenes with the highest distribution on $C_{20}(OH)_8$ with +0.197 charged carbons and -0.711 charged O atoms. These high point charges upon the heterofullerenes surface can improve the storage capacity since make them worthy of investigation for hydrogen storage. All exohedral derivatives increase the HOMO-LUMO gap leading to the enhanced stability against electronic excitations. On the other hand, all exohedral derivatives decrease the conductivity of fullerene through increasing their HOMO-LUMO gap.

Table1.Point groups (PG), total energies (E _{tot} in a.u.), ranges of C-C and X–C bond lengths (Å) and
C–C–X angles (°) for the scrutinized heterofullerenes along with C_{20} at the B3LYP/6-31+G* level.
Binding energies (B.E.) and the smallest vibrational frequencies (v _{min}), HOMO-LUMO energy gaps
(ΔE _{H-L} (eV)) at B3LYP/6-311++G**.

Species	PG	E _{tot} (a.u.)	C-C	X-C	C-C-X	B.E. (eV)	v_{min} (cm ⁻¹)	ΔE_{H-L} (eV)
C ₂₀	C_i	-761.6	1.40-1.53	-	-	121.27	32	1.89
$\begin{array}{c} C_{20}H_8 \\ C_{20}(OH)_8 \\ C_{20}(CN)_8 \end{array}$	T_h/C_1 T_h/C_1 T_h/C_1	-766.7 -1368.6 -1504.7	1.35-1.54 1.35-1.54 1.34-1.54	1.09 1.40 1.16	118.8 120.7 119.2	152.25 185.32 216.54	474 182 85	5.67 5.08 5.60
$\begin{array}{c} C_{20}F_8 \\ C_{20}Cl_8 \\ C_{20}Br_8 \end{array}$	$\frac{T_h/C_1}{T_h/C_1}$ $\frac{T_h/C_1}{T_h/C_1}$	-1560.8 -4443.7 -21355.1	1.35-1.53 1.35-1.53 1.35-1.52	1.37 1.79 1.96	118.1 118.6 118.3	153.54 142.38 138.44	192 108 61	5.11 5.06 4.74

References

[1] A. D. Becke, Phys. Rev. A 38 (1988) 3098. [2] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.

- [3] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
- [4] M.J. Frisch et al., Gaussian 98; Gaussian, Inc.: Pittsburgh, PA, 1998. See the supporting information for the full reference.
- [5] P.C. Hariharan, J.A. Pople, Mol. Phys. 27 (1974) 209.
- [6] M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. DeFrees, J.A. Pople, J. Chem. Phys. 77 (1982) 3654.
- [7] T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.v.R. Schleyer, J. Comput. Chem. 4 (1983) 294.
- [8] M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80 (1984) 3265.
- [9] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1.

Fig. 1. Optimized heterofullerenes at B3LYP/6-31+G.