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The magnetic materials display a rich variety of physical behaviours depending on the size of their 
particles. When the dimensions of the particles are gradually decreased, we observe a change in the 
character of their magnetic properties connected to a radical change of their  domain structure – the 
originally multi-domain state changes to a single-domain one. This change has a deep topological 
reason – the reduction of the particle size increases the relative share of the surface atoms with respect 
to the core ones. In other words the surface energies become more important  than the volume energies 
[1]. The energy of the Bloch walls dividing individual magnetic domains belongs to the surface energies 
while the magnetostatic self-energy of the particle is a volume energy. We may also look on the 
transition between the multi-domain and single-domain state of the particle as reaching the size when 
the particle cannot support any more the domain walls as their energy exceeds the energy of the stray 
fields around the magnetically saturated particle.  
The transition occurs thus at a critical size of the particle given by the equilibrium between these two 
contributions to the total magnetic energy. Let us slightly quantify this approach: the domain wall energy 
σw is given by another equilibrium of two energies – the exchange and anisotropy ones. As a result it is 
proportional to the square root of the product of  the exchange constant A and the (effective) anisotropy 
constant K 

                                                       σw  ( K A )
1/2

  .                                                                    (1) 
If we assume a spherical particle with relatively high uniaxial (magnetocrystalline) anisotropy we may 
compare the energies of the single-domain state and of two symmetrical domains divided by a Bloch 
wall. For the critical radius Rc of the transition between these two states we then obtain [1]  

                                                      Rc  σw / Ms
2
 = (K A)

1/2
  / Ms

2
 .                                            (2)   

Let us mention that the critical radius is proportional to (K)
1/2

 which may strongly depend on temperature 
and thus make also the critical size temperature dependent. The anisotropy need not be of the 
magnetocrystalline origin – its source may be the shape anisotropy, stress anisotropy via 
magnetoelastic coupling etc. The estimates along similar lines made for various materials gave values 
of the critical radius of the order of tens to many hundreds of nm. All the above reasoning concerns 
isolated particles and the situation may be dramatically changed when the interaction among particles is 
taken into account, usually leading to higher critical sizes for the transition to single-domain state.  
The above discussion was concerned with the upper limit for the size of single-domain particles – the 
existence of this state is, however, also limited from below. According to Néel [2] the relaxation time τN 
of the particle moment to its equilibrium position is given by  
                                                τN  = τ0  exp( Keff V / kBT) ,                                                             (3) 
where  Keff  is the (effective) anisotropy constant, V the particle volume, kB is the Boltzmann constant, T is 

temperature, and τ0 is a constant of the order of 10
-9

 – 10
-11

s.   
If the volume V of the particle with uniaxial anisotropy becomes sufficiently small, the thermal energy 
kBT prevails over the energy barrier KeffV and τN decreases below the observation time. This leads to 
spontaneous fluctuations of the direction of the magnetic moment between the two orientations along 
the (uniaxial) easy axis and the time average of the magnetic moment vanishes. In an applied magnetic 
field the behaviour of a system of such particles resembles a paramagnet and the state of the system is 
called superparamagnetic. Let us remark at this point that the appearance of superparamagnetism is 
closely connected with the relevant time τm ("time window") of our measurement, observation or 
application of external magnetic fields.  
The two limiting possibilities τN >> τm and τN << τm thus lead either to magnetically ordered/stable state in 
the former case or superparamagnetism in the latter one. They are separated by the region where τN ~ 
τm. This condition may be fulfilled according to (3) by changing either the particle volume or temperature, 
assuming that the anisotropy constant does not essentially change in the considered temperature 
range. 

For the given particle volume V and the relevant time τm we can then define the so called blocking 
temperature TB which is from (3) given by 

                                 TB =   Keff V / C k ,                                                (4) 
where the constant C = ln(τm / τ0)  is equal to 27.6, 16.1, and 6.9 for the relevant times of observation 
100 s (DC measurement), 10

-3
 s (frequency of 1 kHz), and 10

-7
 s (e.g. Mössbauer spectroscopy) 

assuming τ0 = 10
-10 

s. Relation (4) illustrates the sensitivity of the blocking temperature to the relevant 



time window – the blocking temperature derived from the DC magnetic measurements is about four 
times lower than that determined from the behaviour of the Mössbauer spectra, if Keff remains constant.   
In real situations we deal with a system of particles displaying a distribution of sizes and consequently 
the blocking temperatures also possess a distribution. A meaningful estimate of this distribution from DC 
magnetic measurement may be done from the temperature dependences of the magnetization after 
cooling the system in zero (ZFC) or non-zero magnetic field (FC). Lu et al. [3] have shown that the 

distribution p of TB should be proportional to the derivative by T of the difference between the MZFC and MFC  

moments:  

                                           p (TB) = d (MZFC – MFC ) / dT .                      (5) 
For the relevant value of the blocking temperature of the system we may then use the temperature at 
which the function p (TB) passes through its maximum.                                                              .      
On the other end  of the time scale stands the Moessbauer spectroscopy with the characteristic time of  
~10

-7
 s. For the rather frequent case of alloys and compounds of iron, we may exploit the Mössbauer 

spectroscopy of the 
57

Fe isotope. From the spectra acquired at various temperatures we may estimate 
the relative number of Fe moments that are either in the blocked or superparamagnetic state and accept 
for the average blocking temperature that one where these two quantities are approximately equal.  
In our work [4] we applied this approach to the system of particles of iron oxides predominantly 
consisting of γ-Fe2O3 (maghemite). From the two independent estimates of the “average” blocking 
temperatures for the two rather different observation times (DC magnetic measurements and 
Mössbauer spectroscopy) we had the unique possibility to derive the ranges of both relevant quantities 
from relation (3): the energy barrier Keff V  and the constant τ0 . For τ0  we obtained 5x10

-8 
s – 2x10

-11 
s in 

good agreement with the usual estimates of this quantity.                                                               .                  
With the average particle size of about 5 nm which gives for the volume ~10

-25
m

3
, we obtained for the 

absolute value of Keff ≈ 2.4x10
4
 – 3.6x10

5
 J/m

3
. This value compares well with the magnitude of the first 

constant of magnetocrystalline anisotropy of bulk cubic maghemite equal to  -2.5x10
4
 J/m

3
 [5]. We may 

thus conclude that in this case the relevant anisotropy constituting the energy barrier for spontaneous 
change of the direction of particle moment is of the magnetocrystalline origin.  
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