Structural and magnetic properties of nanocrystalline lanthanum – strontium manganese perovskites

Pavel Žvátora¹, M. Veverka², P. Veverka², R. Epherre³, G. Goglio³, E. Duguet³, E. Pollert², Vladimír Král¹

¹Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.

²Department of Magnetist and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, Prague, 162 00, Prague 6, Czech Republic.

³CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr Albert Schweitzer, F-33608 Pessac, France. pavel.zvatora@vscht.cz

The mixed oxides of the general formula $La_{1-x}R_xMnO_3$, where R denotes bivalent alkaline-earth constitute a large family of the manganese perovskites interesting from the fundamental as well as applications aspects, like the colossal magnetoresistance [1] and more recently magnetic fluid hyperthermia [2-4]. Therefore while the previous studies were carried out mostly on the bulk materials now it is desirable to pay an attention on the magnetic nanoparticles. The present contribution is a continuation of this matter [5,6] in a specific way of an interplay between the cationic compositions, oxygen stoichiometry, structure, size of the particles and their magnetic properties.

A set of single phase nanocrystalline perovskites of the formal composition $La_{1-x}Sr_xMnO_{3+\delta}$ (0.2 $\leq x \leq$ 0.45) was successfully synthesized employing sol – gel processing and annealed at 700 °C, 800 °C and 900 °C, respectively.

Let us note that for a clarity an "oxygen excess", characterized by the parameter $\delta > 0$ corresponds in reality to the cationic vacancies and "oxygen deficiency", characterized by the parameter $\delta < 0$ corresponds to the oxygen vacancies. Therefore the actual composition should be rewritten as $La_{a}^{3+}Sr_{b}^{2+}Mn_{c}^{3+}Mn_{d}^{4+}O_{3}$ where $a = 3(1-x)/(3+\gamma)$, $b = 3x/(3+\gamma)$ and $c + d = 3/(3+\gamma)$.

All the prepared nanocrystals were found to be rhombohedral with space group R-3c. The controlled valency mechanism, formally described as $La^{3+} + Mn^{3+} \leftrightarrow Sr^{2+} + Mn^{4+}$ together with a successive lowering of the heating temperature lead to an increase of the content of tetravalent manganese ions and a gradual decrease of the steric distortions.

Thus an interplay of both these effects provoked by the compositional changes, i.e variation of the Mn³⁺/Mn⁴⁺ ratio and the bonding angles Mn-O-Mn are decisive for the resulting magnetic behaviour and one can expect three different situations concerning the magnetic interactions: ratio of Mn³⁺/Mn⁴⁺ > 1 where the antiferromagnetic superexchange interactions Mn³⁺_γ-O²⁺_σ-Mn³⁺_γ compete with ferromagnetic double exchange interactions Mn³⁺_γ-O²⁺_σ-Mn⁴⁺_ε \leftrightarrow Mn⁴⁺_ε-O²⁺_σ-Mn³⁺_γ; ratio of Mn³⁺/Mn⁴⁺ = 1 where solely ferromagnetic phase possessing double exchange interactions Mn³⁺_γ-O²⁺_σ-Mn⁴⁺_ε \leftrightarrow Mn⁴⁺_ε-O²⁺_σ-Mn⁴⁺_ε \rightarrow Mn⁴⁺_ε-O²⁺_σ-Mn⁴⁺_ε \leftrightarrow Mn⁴⁺_ε-O²⁺_σ-Mn⁴⁺_ε \leftrightarrow Mn⁴⁺_ε-O²⁺_σ-Mn⁴⁺_ε \rightarrow Mn⁴⁺_ε-O²⁺_σ-Mn⁴⁺_ε \rightarrow Mn⁴⁺_ε-O²⁺_σ-Mn⁴⁺_ε \rightarrow Mn⁴⁺_ε-O²⁺_σ-Mn⁴⁺_ε \rightarrow Mn⁴⁺_ε-N⁴⁺_ε \rightarrow Mn⁴⁺_ε-N⁴⁺_ε \rightarrow Mn⁴⁺_ε-N⁴⁺_ε \rightarrow Mn⁴⁺_ε-N⁴⁺_ε \rightarrow Mn⁴⁺_ε-N⁴⁺_ε-N⁴⁺_ε \rightarrow Mn⁴⁺_ε-N⁴⁺_ε \rightarrow Nn⁴⁺_ε-N⁴⁺_ε-N⁴⁺_ε \rightarrow Nn⁴⁺_ε-N⁴⁺_ε-N⁴⁺_ε-N⁴⁺_ε \rightarrow Nn⁴⁺_ε-N⁴⁺_ε-N⁴

Further it is the size when resulting magnetic properties are influenced by a difference between the inner part of particles where spins are ordered and the outer surface layers where spins become disordered.

A simultaneous acting of these influences is documented by a comparison of the measured dependences of magnetization given in Fig. 1 and a similar behaviour exhibit the evolution of the Curie temperature.

Acknowledgements

The authors thank the Ministry of Industry and Trade of the Czech Republic for the support under the grant FR-TI3/521

References

- [1] Colossal magnetoresistive oxides , ed. Y. Tokura, Gordon and Breach, New York, 2000
- [2] Vasseur S., Duguet E., Portier J., Goglio G., Mornet S., Hadová E., Knížek K., Maryško M., Veverka P., Pollert E., J. Magn. Magn. Mater., **302** (2006) 315
- [3] Pollert E., Knížek K., Maryško M., Kašpar P., Vasseur S., Duguet E., J. Magn. Magn. Mater., 316 (2007) 122
- [4] Kaman O., Pollert E., Veverka P., Veverka M., Hadová E., Grünwaldová V., Vasseur S., Epherre R., Mornet S., Goglio G., Duguet E., Nanotechnology 20 (2009) 275610 (7pp)
- [5] Epherre R., Duguet E., Mornet, S., Pollert, E., Louguet S., Lecommadoux S., Schatz C., Goglio G., J.Mater. Chem. 21 (2011) 4393

[6] Epherre R., Pepin C., Penin N., Duguet E., Mornet S., Pollert E., Goglio G., J. Mater. Chem 21 (2011) 14990

Figures

Fig. 1: Dependence of the magnetization on the composition and mean size of the magnetic cores, 66 \pm 10 nm - \blacksquare , 30 \pm 5 nm – x , 19 \pm 3 nm - \bigtriangleup