Optical nano-imaging of gate-tuneable graphene plasmons **Pablo Alonso-González**¹, Jianing Chen^{5,1}, Michela Badioli², Sukosin Thongrattanasiri³, Florian Huth^{1,6}, Johann Osmond², Marko Spasenović², Alba Centeno⁷, Amaia Pesquera⁷, Philippe Godignon⁸, Amaia Zurutuza⁷, Nicolas Camara⁹, Javier Garcia de Abajo³, Rainer Hillenbrand^{1,4}, Frank Koppens² CICnanoGUNE, 20018, Donostia–SanSebastián, Spain CICFO-Institut de Ciéncies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain 3. IQFR-CSIC, Serrano119, 28006, Madrid, Spain 4. IKERBASQUE, BasqueFoundationforScience, 48011, Bilbao, Spain 5. Centro de Fisica de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain 6. NeaspecGmbH, 82152, Martinsried, Munich, Germany 7. Graphenea S.A., 20018, Donostia-SanSebastián, Spain 8. CNM-IMB-CSIC–Campus UAB, 08193, Bellaterra, Barcelona, Spain 9. GREMAN, UMR7347, UniversitédeTours/CNRS, France p.alonso@nanogune.eu ## **Abstract** Graphene holds great promise for ultra-compact and electronically controlled plasmonics [1,2]. Recently, resonant coupling of propagating THz waves to plasmons in micro-ribbons has been demonstrated [3], while IR near-field microscopy has been applied to observe the coupling of graphene plasmons to phonons [4]. In our work [5] we use (similar to ref. [6]) scattering-type scanning near-field optical microscopy (s-SNOM) to visualize propagating and localized infrared plasmon modes in graphene nanostructures in real space (**Fig. 1**). By spectroscopic imaging we measure the graphene plasmon wavelength λ_p as a function of excitation wavelength, which confirms the theoretically predicted plasmon dispersion. We observe that the plasmon wavelength λ_p = λ_0 /40 is remarkably reduced compared to the illumination wavelength λ_0 , which can directly be attributed to the two-dimensionality and unique conductance properties of graphene. Furthermore, we demonstrate tunability of the plasmon wavelength by gating graphene nanoribbons on a SiO₂ substrate. The possibility to tune plasmons of extreme subwavelength electronically opens up a new paradigm in optical and opto-electronic telecommunications and information processing. ## References - [1] A. Vakil, N. Engheta, Science 332, 1291–1294 (2011) - [2] F.H.L. Koppens, D.E. Chang, J. Garcia de Abajo, Nano lett. 11, 3370 (2011) - [3] L. JU, et al., Nat. Nanotech. 6, 630 (2011) - [4] Z. Fei, et al., Nano Lett. 11, 4701 (2011) - [5] J. Chen, et al., arXiv:1202.4996 - [6] Z. Fei, et al., arXiv:1202.4993 ## **Figures** **Figure 1:** Imaging propagating and localized graphene plasmons by *s*-SNOM. a) Schematic of the experimental configuration used to launch and detect propagating surface waves in graphene. The near fields generated at the apex of an illuminated metal tip launch plasmons on graphene. Back reflection of the plasmons at the graphene edge yields plasmon interference. b) Near-field amplitude image acquired for a tapered graphene ribbon on top of 6H-SiC, revealing interference of graphene plasmons. The imaging wavelength is λ_0 =9.7 μ m. The tapered ribbon is 12 μ m long and up to 1 μ m wide.