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Abstract 

The electronic properties of charged particles in two-dimensional (2D) systems under arbitrary disorder 
have attracted much attention in the last years. Not only from the theoretical point of view, because the 
scaling theory predicts that all  states are localized in 2D, but also whether there are experimentally 
achievable true 2D systems. Graphene has been proposed as the most suitable material to address 
these  questions  [1-4].  Most  of  the  numerical  studies  claim  that,  as  expected,  disorder  induces 
localization  in  graphene.  The  detailed  features  of  the  localized  behaviour  depend  on  the  precise 
numerical approaches employed for evaluating, e.g. the single-particle wavefunctions or the conductivity 
of  the  graphene  samples.  A  few  papers  even  propose  that  graphene  can  support  a  localized  to 
extended  transition  [3,4].  Therefore,  the  problem of  localization  in  2D  systems,  and  specifically  in 
graphene, is still under debate and resembles somewhat the discussion of 2D localization of the mid 
1980's.

In this work we proposed a novel approach based on a combination of the transfer matrix method and 
the power method for diagonalizing Hermitian matrices. Our methods allows to study 2D samples of size 
MxM directly without having to use quasi-1D geometries. We apply the method to both a simple square 
lattice (SQ) and a hexagonal lattice, representing a graphene sample, with zigzag (ZZ) and armchair 
(AC) edges. Our calculation is based on the Anderson tight-binding Hamiltonian for an electron in a 
lattice  with  compositional  disorder.  The  on-site  potentials  are  randomly  distributed  according  to  a 
uniform distribution with width W. 

Fig. 1 shows the localization lengths  � for (a) SQ and (b) ZZ lattices as a function of energy,  E, for 
different disorders, W, ranging from W=1 to 10, for systems with 104 lattice sites. Results have a relative 
error equal or smaller than 2.5%, which is obtained averaging over at least 500 disorder configurations. 
For comparison it should be noted that all lengths are given in units of the nearest neighbour distance, 
and therefore is different for each lattice, according to its topology. When the strength of the disorder 
increases the localization length found to decrease as expected because the wavefunctions become 
more localized. This effect is so robust that under strong disorder the localizations lengths are one order 
of magnitude smaller than the system size. However, for weaker disorders the localization lengths are 
bigger than the system size. Hence these states appear as extended, when actually this is a finite size 
effect. 

A truly localized to extended transition can be studied from the dependence of the reduced localization 
length �=�/M on the width M. In the localized regime � decreases with M since � remains finite in the 
thermodynamic limit. On the other hand, � increases for extended states. At the transition � is constant. 
In order to describe a system with infinite width and length it is necessary to extrapolate the computed 
data of   with  � M. This can be done through a finite size scaling (FSS) procedure [5], assuming that 

=f( /� � M) where  is the scaling parameter. � In Fig. 2  is plotted as a function of /� � M for (a) SQ and (b) 
ZZ lattice at  E=0. Results show that it  is possible within the accuracy of our data to find a scaling 
function with only the localized branch. Even more, the SQ and ZZ data can be combined into a single 
such localized FSS curve. The presence of this one branch is a sign of the complete localization of 
states for large systems and hence the absence of an Anderson transition. Similar results are obtained 
for AC graphene-type lattice. 
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