Synthesis of Transparent Conducting Hybrid Film of Metalliuc SWCNT and Graphene

Wansoo Huh, Kwang-Hoon Lee

Soongsil University, Department of Chemical Engineering, Dongjakku Sangdodong 511 Seoul, KOREA

wshuh@ssu.ac.kr

Abstract

Organic electronic devices are receiving growing interest because of their potential to employ

lightweight, low-cost materials in a flexible architecture. These devices contain organic semiconductor

materials that can be uniquely tuned to enable properties and performance which can be competitive

with entrenched inorganic electronics, while facilitating other exciting niche applications. Organic

electronic devices such as organic photovoltaics and organic light emitting diodes require the use of a

transparent electrode to allow photons to enter or exit the devices efficiently and to simultaneously allow

the extraction or injection of charge carriers. Typically, indium tin oxide (ITO) is utilized as the electrode

due to its excellent transparency throughout the visible spectrum, its relatively low sheet resistance, and

its work function, which is compatible with the injection and collection of charge carriers in organic

semiconductors.

However, ITO may ultimately hinder the full market integration of organic electronics due to its

increasing cost, lack of mechanical flexibility, chemical instability, and sustainability pertaining to the

environment and material utilization. Therefore, alternatives for ITO in organic electronics are being

pursued. Transparent electrodes comprised of carbon nanomaterials are an appealing choice as a

surrogate for ITO in organic electronics because of the extraordinary electrical and mechanical

properties these structures possess, and the demonstrated potential of state of the carbon nanomaterial

films. As such, the research presented in this dissertation has been conducted to advance the goal of

manufacturing SWCNT/graphene hybrid networks with transparent electrode properties that meet or

exceed those of ITO.

In order to fully realize the potential of SWCNT networks as a transparent electrode, monodisperse

networks that leverage the electronic homogeneity of the film were investigated and discussed. Metallic

SWCNT films were found to have superior optoelectronic properties in comparison to similarly

processed SWCNT films. Electrical sheet resistance evaluation, and optical spectroscopy combined

with a theoretical understanding of metallic and semiconducting SWCNT were employed to clearly

describe the impact of structure on these films.

In this dissertation, SWCNT films were characterized with regard to the collective and individual properties of the SWCNTs that comprise the network. The insight gained from evaluation of intrinsic SWCNT properties was effectively leveraged to expand the present understanding of SWCNT networks to facilitate future SWCNT-based electrode development.

References

- [1] Saito R., Fujita M., Dresselhaus G., and Dresselhaus M. S., Electronic structure of chiral graphene tubules, Appl. Phys. Lett., 2204-2206 (1992). 60
- 2. lijima S., Helical microtubules of graphitic carbon, Nature, 56-58 (1991), 354
- 3. lijima S., and Ichihashi T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 603-605 (1993), 363

Figure: TEM image a) single layer of graphene, b) few layer of graphene.

