Mechanism of alkali metal insertion into TiO₂ polymorphs

M. Zukalova, B. Laskova and L. Kavan

J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague 8, Czech Republic marketa.zukalova@jh-inst.cas.cz

 TiO_2 (anatase) and $TiO_2(B)$ (monoclinic polymorph of TiO_2) are attractive candidates for anodes in rechargeable Li-ion batteries, due to their cycling stability, reasonable capacity and operating potential. Li insertion into TiO_2 polymorphs proceeds as a diffusion controlled process, where the peak current in cyclic voltammogram scales with square root of the scan rate. Excess Li can be accommodated either at the surface of the nanometer-sized particles or at the open channels in the structure of particular polymorphs by a pseudocapacitive faradaic process, which is not controlled by diffusion. In this case, currents in the peaks of cyclic voltammograms of Li scale with the first power of scan rate.

Li-insertion electrochemistry of $TiO_2(B)$ is basically different from that of anatase. Accommodation of Li in the $TiO_2(B)$ lattice manifests itself by two pairs of peaks in cyclic voltammogram with formal potentials of ca. 1.5 and 1.6 V. Zukalova et al¹ found that Li-insertion into $TiO_2(B)$ is characterized by unusually large faradaic pseudocapacitance. This peculiar effect was ascribed to Li⁺ accommodation in open channels of $TiO_2(B)$ structure allowing fast Li-transport in $TiO_2(B)$ lattice along the b-axis (perpendicular to (010) face). Deeper insight into differences between charging mechanisms of $TiO_2(B)$ and anatase during Li⁺ insertion provides analysis of cyclic voltammograms of Li insertion. The ratio of capacitive contributions to overall charge of Li-storage was found to be over 30% higher in $TiO_2(B)$ compared to that in anatase nanocrystals². The predominant pseudocapacitive process in $TiO_2(B)$ was related to accommodation of Li inside the $TiO_2(B)$ open channels in monoclinic lattice.

This work was supported by the Grant Agency of the Czech Republic (contracts No. 13-07724S and 15-06511S).

References

[1] Zukalova, M.; Kalbac, M.; Kavan, L.; Exnar, I.; Graetzel, M. Chemistry of Materials, 17, 5, (2005), 1248-1255.

[2] Laskova, B.; Zukalova, M.; Zukal, A.; Bousa, M.; Kavan, L. Journal of Power Sources, 246, (2014), 103-109.