Direct measurements of oxygen vacancy in TiO₂ single crystal by muon spin rotation spectroscopy

Hiroko Ariga¹, Koichiro Shimomura², Amba Pant², Eiko Torikai³, Kanetada Nagamine⁴, Satoru Takakusagi¹, Kiyotaka Asakura¹

¹ Catalysis research center, Hokkaido University, Sapporo, Hokkaido, Japan. ² KEK, Ibaraki, Japan. ³ Interdisciplinary Graduate School of Medicine and Engineering, Yamanashi University, Yamanashi, Japan. ⁴ Department of Physics and Astronomy, University of California, Riverside, CA, United States ariga@cat.hokudai.ac.jp

Abstract

Muon is a lighter isotope of hydrogen and muon spin rotation (μ SR) can be a powerful probe to specify the behavior and local structure of hydrogen inside materials. Recently accelerator based strong pulse muon facilities have been developed and has opened the new feasibility for μ SR measurements using strong spin polarized muons with various kinetic energies. Titanium dioxide (TiO₂) is the most widely used material as high efficiency photocatalysis.[1] One of the crucial and unrevealed issues are properties of defects, e.g. oxygen vacancies. Recently hydrogen dissolved in TiO₂ during preparation process [2,3] forms impurity states in the band gap to change electron excitation process and electron conductivity. We applied μ SR measurement on the TiO₂ single crystal in order to understand the behavior and electronic properties of both defects and impurities.

The experiments were mainly carried out in the muon beam line at the J-PARC muon facility (MUSE). All the experiments are conducted under He atmosphere. TiO₂ single crystal was reduced by annealing in UHV.

In this contribution we will discuss the muon interaction with defect site of TiO_2 by zero-field, longitudinal and transverse external field μSR spectra. Figure 1 shows the time dependence of zero-external field μSR spectrum of unreduced and reduced TiO_2 at low temperature. The faster relaxation was found in the reduced TiO_2 . We fitted the spectra with assumption that the magnetic field statistically distributed with Gaussian distribution (Kubo-Toyabe relaxation function). The spectrum of the stoichiometric TiO_2 is well fitted with the magnetic field of 0.22 mT, which is a typical value for nuclear spins. The relaxation of spectra for the reduced TiO_2 is fitted with the magnetic field of 0.28 mT. Those magnetic fields are not able to be explained only by nuclear magnetic moment of TiO_2 , but are able to be explained with nuclear magnetic moment of Hydrogen, which H- μ distance was 1.1 nm. The origin of relaxation in reduced TiO_2 is muon interaction with Hydrogen in oxygen vacancies (fig. 1(c)).

We have also conducted µSR measurement with applying longitudinal and transverse external field. Those results show stable sites of muon (hydrogen) and electron distribution in the reduced TiO₂.

References

- [1] A. Fujishima, K. Honda, Nature **238** (1972) 37.
- [2] X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331 (2011) 746.
- [3] K. Shimomura, R. Kadono, A. Koda, K. Nishiyama, and M. Mihara, Phys. Rev. B 92 (2015) 075203.

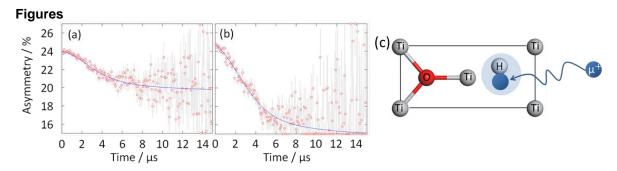


Figure 1. Zero field μ SR spectrum of (a) stoichiometric and (b) reduced rutile TiO₂ at 15 K with error bar. Blue lines are fitting curve. (c) Structure model of muon stabilized site.