Novel Manganese oxide-Titanium dioxide-Graphene Based Tetranary Nanohybrids for High-

Performance Supercapacitor

N. Muthuchamy¹, K-P. Lee^{1,2,3}, A-I. Gopalan^{2.3}

¹Department of Chemistry Education, Kyungpook National University, Daegu, S.Korea ²Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu, S.Korea ³Department of Nanoscience and Nanotechnology, Kyungpook National University, Daegu, S.Korea Presenting author: *A-I. Gopalan* (algopal99@gmail.com)

This research reports the first synthesis of manganese oxide-titanium dioxide-graphene ternary nanohybrids ($MnO_2@TiO_2(G)$ -TNH) and demonstrates their excellent performances as supercapacitor electrode materials. The morphologies, microstructures, compositions and optical properties of the $MnO_2@TiO_2(G)$ -TNH were characterized by field emission scanning electron microscopy equipped with an energy dispersive X-ray spectrometer, X-ray diffraction, X-ray photoelectron spectroscopy, UV-visible and diffuse reflectance spectroscopy. The $MnO_2@TiO_2(G)$ -TNH offered high electrode/electrolyte interfacial contact areas, rapid charge/discharges and fast electron transfer pathways for supercapacitor applications. Due to the synergistic effect of MnO_2 , TiO_2 and G in their nanostructured forms, the supercapacitor electrode with the as prepared $MnO_2@TiO_2(G)$ -TNH existed significantly enhanced specific capacitance at a current density of 3 A g⁻¹, excellent rate capability and remarkable cycling stability (after 350 cycles). And, the present strategy offers a promising design and synthetic protocol of electrode materials for future supercapacitor applications